EBOLA DARPA’s Synthetic Biology Work Targets Diseases, New Materials

Possible Impact

TB Fanatic
Synthetic biology is an emerging interdisciplinary field that uses advanced science
and engineering to make or redesign living organisms such as bacteria or cells so
they can carry out specific functions. Synthetic biology involves making new DNA, or
genetic code, that doesn’t naturally exist in nature.

“What’s happening today broadly in biology is the intersection of this scientific field
with physical science and engineering and information technology,” Prabhakar
explained, adding that DARPA itself is doing “a handful of things” in biology.


U.S. Dept of Defense

By Cheryl Pellerin
DoD News, Defense Media Activity
http://www.defense.gov/news/newsarticle.aspx?id=123684&utm_source=dlvr.it&utm_medium=twitter
WASHINGTON, Nov. 20, 2014 – Soldiers, military scientists and Defense
Department civilians are on the ground in West Africa to help stop
history’s largest Ebola outbreak, and now innovators at the Defense
Advanced Research Projects Agency are turning their job of changing
what’s possible to the fight against infectious diseases.

During an interview at the Defense One Summit here yesterday, DARPA
Director Dr. Arati Prabhakar spoke with Defense One technology editor
Patrick Tucker about the potential of synthetic biology to contribute to
national security.

“What’s happening today broadly in biology is the intersection of this
scientific field with physical science and engineering and information
technology,” Prabhakar explained, adding that DARPA itself is doing “a
handful of things” in biology.

Synthetic Biology

Synthetic biology is an emerging interdisciplinary field that uses
advanced science and engineering to make or redesign living organisms
such as bacteria or cells so they can carry out specific functions.
Synthetic biology involves making new DNA, or genetic code, that
doesn’t naturally exist in nature.

Prabhakar calls synthetic biology a dream that people in the field have
had for several years.

“Because of the advances in areas like genetic sequencing, we are now
starting to have the ability to engineer microorganisms so that cells in
culture can do new things, produce whole new chemistries -- whole new
materials,” she said.

And when biologists dream of the potential of synthetic biology, “what
we dream about is highly energetic materials or new fuels, new
therapeutics, new ways to deal with infectious disease, materials with
new mechanical properties that we've never been able to invent before,”
Prabhakar added, noting that the technological capability to do such
work is rudimentary today.

Building Tools and Capabilities

It can cost hundreds of millions of dollars to do even simple genetic
modifications of cells, she said, so a major focus of the synthetic biology
work at DARPA is to build tools and capabilities to accelerate the field.

“One part of our program is called 1000 Molecules, and it's really a
challenge for the community to show us brand-new chemistries -- new
molecules that no one's been able to make before,” she said.

During a 1000 Molecules Proposers’ Day in July 2013, DARPA
encouraged potential proposers to “enable transformative and currently
inaccessible projects across chemicals, materials, sensing capabilities and
therapeutics.”

“We're going to find out [if they can],” Prabhakar said, “but it’s very
early.”

Applications for Infectious Disease

The director said some of the earliest real applications in synthetic
biology will involve infectious diseases.

“As an example, our work on infectious disease harvests from the work
that's going on in synthetic biology, and applies it to this problem,” she
said.

Today everyone is aware of what’s going on with Ebola virus disease,
Prabhakar said, “but in fact, that's just one example in a long series of
infectious diseases that flare up in some part of the world.”

“Today when [an infectious disease] flares up, it globalizes because of
travel and the world we live in,” she added. “That's just going to be part
of our future.”

The Dark Side of Synthetic Biology

Prabhakar said the question DARPA researchers have been asking is for
naturally occurring infectious disease threats, but that it also recognizes
there’s a darker side of synthetic biology.

“Over time, [synthetic biology] is going to become a tool I think that
adversaries can use or terrorists might be able to use to engineer
microorganisms to do bad things,” the director added.

The 1000 Molecules effort is part of a DARPA program called Living
Foundries, whose goal is to leverage the synthetic and functional
capabilities of biology to create a revolutionary, biologically based
manufacturing platform for novel materials, sensing capabilities and
therapeutics.

Transforming Biology

Living Foundries, DARPA officials said, seeks to transform biology into an
engineering practice by developing the tools, technologies,
methodologies and infrastructure to speed the biological design-build-
test-learn cycle and expand the complexity of systems that can be
engineered.

Another part of Living Foundries, called Advanced Tools and Capabilities
for Generalizable Platforms, began in 2012 and focuses on developing
next-generation tools and technologies for engineering biological
systems. Its goal is to compress the biological design-build-test-learn
cycle by at least 10 times in time and cost as it creates more complex
systems.

For the Defense Department, synthetic biology and its promise for
infectious diseases are tools for national security and readiness, officials
said.

Who You Gonna Call?

Prabhakar said the Army understands the need for such tools because
soldiers are on the ground dealing with Ebola, and that it matters to DoD
for several reasons, No. 1 being that “when there are problems in the
world, guess who often gets called on to go deal with them?”

Dealing with infectious diseases also is a readiness issue, she said.

When pandemic H1N1 was sweeping the world in 2009, the director said,
“people were trying to figure out what it meant for readiness -- just the
fact that we didn't know who was infected with H1N1 or [a milder]
seasonal flu. We’re living in a fog about that.”

In the future, whether it's naturally occurring or a manipulated threat,
she said, “we want the ability to collapse the time it takes for us to
respond to an infectious disease and outpace its spread.”

(Follow Cheryl Pellerin on Twitter: @PellerinDoDNews)
 
Top